• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 105066, г. Москва,
Старая Басманная ул., д. 21/4

 

🧭 Как до нас добраться

 

Телефон: +7 (495) 772-95-90 доб. 22734

E-mail: ling@hse.ru

Руководство
Заместитель руководителя Ахапкина Яна Эмильевна

Редакторы сайта — Наталья Борисовна Пименова, Татьяна Брисовна Казакова, Максим Олегович Бажуков, Юлия Геннадьевна Бадрызлова

Глава в книге
Тест на распознавание книжных заголовков для младших школьников: пилотное исследование

Урывская Д. А., Староверова В. Н., Лопухина А. А. и др.

В кн.: Наука и образование: проблемы и перспективы [Электронный ресурс]: Материалы XXVI Международной научно-практической конференции молодых ученых и студентов, посвящённой 85-летию АГГПУ им. В. М. Шукшина (Бийск, 5 апреля 2024 г.). Бийск: АГГПУ им. В.М. Шукшина, 2024. С. 240-244.

Препринт
Grammar in Language Models: BERT Study

Chistyakova K., Kazakova Tatiana.

Linguistics. WP BRP. НИУ ВШЭ, 2023. No. 115.

Вышла новая версия семантического калькулятора RusVectōrēs


В канун праздников мы хотим сделать подарок всем, кто занимается дистрибутивной семантикой, и выпускаем новую версию нашего сервиса - RusVectōrēs 2.0.

Для тех, кто не знал или забыл: RusVectōrēs (http://ling.go.mail.ru/dsm/) вычисляет семантические отношения между словами русского языка c помощью векторных семантических моделей, обученных на больших текстовых корпусах. Что это такое? В дистрибутивной семантике слова обычно представляются в виде векторов в многомерном пространстве их контекстов. Семантическое сходство вычисляется как косинусная близость между векторами двух слов и может принимать значения в промежутке от 0 до 1. Значение 0 означает, что у этих слов нет похожих контекстов и их значения не связаны друг с другом. Значение 1, напротив, свидетельствует о полной идентичности их контекстов и, следовательно, о близком значении. RusVectōrēs позволяет на основе нейронных моделей, обученных нами на НКРЯ, новостном и веб корпусах работать с векторами слов: вычислять ближайших семантических соседей слова, находить коэффициент сходства между парами слов, складывать и вычитать лексические вектора. Модели обучаются при помощи алгоритмов Skip-Gram и CBOW, реализованных в широко известной утилите word2vec.

Мы рассказывали о нашем сервисе на семинаре "Quantitative Approaches to the Russian Language" в Хельсинки в августе и на тьюториале по дистрибутивной семантике на конференции AINL-FRUCT в Санкт-Петербурге в ноябре. С тех пор функционал RusVectōrēs существенно расширился, и теперь у вас есть ещё больше возможностей для исследований. Основные изменения в новой версии таковы:

1) Появился API, так что теперь к сервису можно обращаться автоматически! С помощью API можно для любого слова получить список слов, семантически близких к данному в выбранной модели. Для этого необходимо выполнить GET-запрос по адресу следующего вида: http://ling.go.mail.ru/dsm/MODEL/WORD/api, где MODEL - идентификатор для выбранной модели, а WORD - слово запроса. По запросу отдаётся текстовый файл в формате tab-separated values, в котором перечислены ближайшие десять соседей слова.

2) Создан инструментарий для визуализации данных. Сервис строит карту взаимного расположения слов, которые ввёл пользователь, в выбранной модели, а затем отображает двумерную проекцию этой карты (поскольку изначально мы имеем дело с векторным пространством высокой размерности).

3) Доступна также визуализация вектора для каждого слова в выбранной
модели, которая находится по уникальной для этого слова ссылке.




4) Семантический калькулятор теперь может выполнять операции двух видов: решение пропорции вида "найти слово D, связанное со словом C таким же образом, как слово A связано со словом B" (analogical inference) и алгебраические операции над векторами (сложение, вычитание, нахождение центра лексического кластера)

5) Конечно, как и раньше, пользователи могут обучать нейронные модели с заданными параметрами на собственных корпусах, чтобы затем использовать их в работе.

6) Вы всегда можете быть в курсе текущих изменений в работе сервиса, подписавшись на нашу новостную ленту!

Желаем, чтобы для ваших исследований не существовало технических преград! Счастливых праздников!

Команда RusVectōrēs:
Андрей Кутузов (Университет Осло, Высшая школа экономики)

Елизавета Кузьменко (Высшая школа экономики)