• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 105066, г. Москва,
Старая Басманная ул., д. 21/4

Как до нас добраться

 

Телефон: +7 (495) 772-95-90 доб. 22734

E-mail: ling@hse.ru

По вопросам, связанным с сайтом: portalhseling@gmail.com

Руководство
Заместитель руководителя Ахапкина Яна Эмильевна
Книга
Proceedings of Third Workshop "Computational linguistics and language science",

Wohlgenannt G., von Waldenfels R., Toldova S. et al.

Iss. 4. EasyChair, 2019.

Статья
Нейрошағир

Orekhov B.

Ватандаш. 2019. No. 2. P. 136-139.

Глава в книге
Genre Classification Problem: in Pursuit of Systematics on a Big Webcorpus

Shavrina T.

In bk.: Proceedings of Third Workshop "Computational linguistics and language science",. Iss. 4. EasyChair, 2019. P. 70-83.

Кто продал душу дьяволу: доклад об извлечении семантических ролей

6 февраля аспирант Илья Кузнецов рассказал о результатах своей работы по автоматическому выделению семантических ролей (semantic role labeling, SRL, semantic parsing). Суть этой задачи - найти участников некоторой ситуации, описываемой в тексте. Например, выделить из фразы «Фауст продал душу дьяволу» участников сделки – «продавца» Фауста, «покупателя» дьявола, «товар» (объект купли-продажи) душу. Саму ситуацию задает предикат «продал», а участники являются его актантами.

 

Автоматическое обнаружение и правильная идентификация таких актантов важны для машинного перевода, «умного» информационного поиска, вопросно-ответных приложений, извлечения информации и различных задач текстовой аналитики. На западе SRL-системы давно являются одним из hot topics компьютерной лингвистики, и для английского языка задача решена весьма неплохо. Однако для русского языка пока сделано очень мало – существует лишь две открытые системы, данные для обучения крайне скудны, открытых соревнований не проводится.

 

Докладчик сделал обзор существующих методов извлечения ролей и представил собственный подход, основанный на машинном обучении. Источником тренировочных данных стал лингвистический ресурс FrameBank – корпус конструкций с семантическими ролями, разрабатываемый при участии преподавателей школы лингвистики О.Н. ЛяшевскойЕ.В. РахилинойС.Ю. Толдовой и др.

 

Использованный в работе алгоритм приписывает каждому слову семантическую роль (или ее отсутствие) при определенном предикате, обучаясь на уже размеченных конструкциях FrameBank. При этом учитываются данные морфологического и синтаксического разборов. Набор лексико-синтаксических признаков, с опорой на которые извлекаются роли, включает часть речи, наличие предлога, залог предиката, путь в дереве зависимостей, а также «кластер» слова. Для получения последнего признака все слова были предварительно кластеризованы по семантической близости.

 

Результаты работы системы показывают, что наиболее весомый вклад в качество извлечения ролей вносят синтаксические признаки, такие как путь до предиката в дереве или тип предлога. Без них точность и полнота извлечения находятся в районе 40%, а с ними достигают 65-70%. В дальнейшем автор исследования надеется повысить показатели за счет совершенствования механизма объединения слов в семантические кластеры (с возможным использованием тезаурусов типа RuThes или WordNet), дополнительной обработки омонимии и введения «конкуренции» между семантическими ролями, т.е. учета уже извлеченных ролей как признака для (не)извлечения других.

Даниил Скоринкин,
аспирант Школы лингвистики