• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
ФКН
Контакты

Адрес: 105066, г. Москва,
Старая Басманная ул., д. 21/4

 

🧭 Как до нас добраться

 

Телефон: +7 (495) 772-95-90 доб. 22734

E-mail: ling@hse.ru

Руководство
Заместитель руководителя Ахапкина Яна Эмильевна
Книга
DREAM Technical Report for the Alexa Prize 4

Baymurzina D., Kuznetsov D., Evseev D. et al.

Alexa Prize Proceedings, 2021.

Статья
Over-specification of small cardinalities in reference production
В печати

Zevakhina N., Pasalskaya E., Chinkova A.

Frontiers in Psychology. 2021.

Глава в книге
Автоматическая лингвистическая разметка китайских текстов, содержащих заимствования: словоделение, транскрипция, PoS-тэггинг

Коновалова А. С., Вольф Е. А., Семенов К. И. и др.

В кн.: Computational Linguistics and Intellectual Technologies Papers from the Annual International Conference “Dialogue” (2021). Вып. 20. М.: РГГУ, 2021. С. 1081-1094.

Препринт
Effort versus performance tradeoff in lemmatisation for Uralic languages

Tyers F. M., Bibaeva M.

Proceedings of the Sixth International Workshop on Computational Linguistics of Uralic Languages. 2020.iwclul-1.2. Association for Computational Linguistics, 2020

Алгоритм для выявления коррупциогенности: магистрант Школы лингвистики одержал победу на хакатоне в Нижнем Новгороде

Алгоритм для выявления коррупциогенности: магистрант Школы лингвистики одержал победу на хакатоне в Нижнем Новгороде

С 10 по 12 сентября в Нижнем Новгороде на территории строительного колледжа проводился очередной этап хакатона по искусственному интеллекту. 16 команд занимались разработкой аналитической системы, позволяющей выявлять и классифицировать возможные коррупциогенные факторы в нормативно-правовых актах Российской Федерации. Целью хакатона являлось сокращение трудозатрат при проведении антикоррупционной экспертизы.

Победителем четвертого хакатона по искусственному интеллекту стала команда «Наносемантика» (Москва). Участники команды: Александр Туманов (студент 1 курса магистратуры НИИ ВШЭ факультета Компьютерной лингвистики, Junior DS Наносемантика), Павел Сухачев (Team Lead DS Наносемантика).

Команда представила алгоритм машинного обучения, который определяет по строке законодательного документа присутствует ли в ней коррупциогенный фактор. Итоговый результат был оформлен в виде веб-сервиса, в который загружается текст закона, а выходом являются фрагменты документа с размеченными коррупциогенными факторами. Среди прочего, победа была достигнута за счет таких особенностей алгоритма, как синтез текста для устранения дисбаланса классов, мета-алгоритм для лучшей разметки датасета, использования бустинга на решающих деревьях, использование active learning при обучении.