• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 105066, г. Москва,
Старая Басманная ул., д. 21/4

Как до нас добраться

 

Телефон: +7 (495) 772-95-90 доб. 22734

E-mail: ling@hse.ru

По вопросам, связанным с сайтом: portalhseling@gmail.com

Руководство
Заместитель руководителя Ахапкина Яна Эмильевна
Книга
Acta Linguistica Petropolitana. Труды Института лингвистических исследований РАН. Т. XV.

Под науч. редакцией: Д. Ф. Мищенко, Д. В. Герасимов, Н. М. Заика и др.

Т. 15: Материалы Четырнадцатой конференции по типологии и грамматике для молодых исследователей (2017 г.). Ч. 2. СПб.: ИЛИ РАН, 2019.

Глава в книге
Double-Blind Peer-Reviewing and Inclusiveness in Russian NLP Conferences

Kutuzov A. B., Никишина И. А.

In bk.: Analysis of Images, Social Networks and Texts. 8th International Conference, AIST 2019, Lecture Notes in Computer Science, Revised Selected Papers. Cham: Springer, 2019. P. 3-8.

Препринт
Length Of Constituent As A Relevant Factor In Russian Syntax

Letuchiy A.

Linguistics. WP BRP. НИУ ВШЭ, 2019. No. WP BRP 88/LNG/2019.

Доклад Ольги Ляшевской на научном семинаре Школы лингвистики

3 апреля Ольга Ляшевская выступила с докладом «Компьютер как новый
"несовершенный" носитель языка (на данных корпуса автоматических
расшифровок устной русской речи)».

В последнее время большую популярность приобрели корпуса так

называемых «несовершенных» говорящих, включающие, например, тексты
носителей эритажного языка, ответы на экзамене по иностранному языку,
первые опусы студентов в жанре академического письма или перевода.
Ошибки таких авторов признаны ценным эмпирическим материалом, который
восполняет лакуну negative evidence в корпусной лингвистике и
проливает свет на многие теоретические вопросы.

В докладе Ольги Ляшевской речь шла о корпусе расшифровок устной

речи, полученных с помощью сервиса SpeechKit Cloud (Яндекс) и
снабженных параллельным слоем ручной разметки. Несмотря на
то, что технологии автоматического распознавания активно развиваются,
дополняют акустическую модель параметрами синтаксической,
семантической, доменной и т.п. дистрибуции, полнота и точность
письменной кодировки речевого сигнала все еще далека от идеала. Взяв
за основу параллельные данные автоматической и ручной расшифровки,
О.Ляшевская предложила типологию таких ошибок и показала, как они
помогают нам понять, что же позволяет человеку более точно настраивать
свой аппарат речевого распознавания. Кроме того, обсуждались вопросы
создания корпуса расшифровок, а именно, проблемы выравнивания
параллельных расшифровок (автоматической и ручной) и детекции ошибок.