• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 105066, г. Москва,
Старая Басманная ул., д. 21/4

Как до нас добраться

 

Телефон: +7 (495) 772-95-90 доб. 22734

E-mail: ling@hse.ru

По вопросам, связанным с сайтом: portalhseling@gmail.com

Руководство
Заместитель руководителя Ахапкина Яна Эмильевна
Книга
Сборник статей к 85-летию В.С. Храковского

М.: Издательский дом ЯСК, 2019.

Глава в книге
Башкирский стих и проблема национальной литературы

Орехов Б. В.

В кн.: Национальные литературы на современном этапе: научные концепции и гипотезы: круглый стол, посвященный 80-летию создания Института языка, литературы и искусства им. Г. Ибрагимова Академии наук Республики Татарстан (11 сентября 2019 г., г. Казань). Вып. 1. Каз.: нститут языка, литературы и искусства им. Г. Ибрагимова АН РТ, 2019. С. 135-145.

Препринт
Inspector: The Tool For Automated Assessment Of Learner Text Complexity

Olga I. Vinogradova, Olga N. Lyashevskaya, Irina M. P.

WP BRP 55/LNG/2017. Высшая школа экономики, 2019. No. 79.

Доклад Ольги Ляшевской на научном семинаре Школы лингвистики

3 апреля Ольга Ляшевская выступила с докладом «Компьютер как новый
"несовершенный" носитель языка (на данных корпуса автоматических
расшифровок устной русской речи)».

В последнее время большую популярность приобрели корпуса так

называемых «несовершенных» говорящих, включающие, например, тексты
носителей эритажного языка, ответы на экзамене по иностранному языку,
первые опусы студентов в жанре академического письма или перевода.
Ошибки таких авторов признаны ценным эмпирическим материалом, который
восполняет лакуну negative evidence в корпусной лингвистике и
проливает свет на многие теоретические вопросы.

В докладе Ольги Ляшевской речь шла о корпусе расшифровок устной

речи, полученных с помощью сервиса SpeechKit Cloud (Яндекс) и
снабженных параллельным слоем ручной разметки. Несмотря на
то, что технологии автоматического распознавания активно развиваются,
дополняют акустическую модель параметрами синтаксической,
семантической, доменной и т.п. дистрибуции, полнота и точность
письменной кодировки речевого сигнала все еще далека от идеала. Взяв
за основу параллельные данные автоматической и ручной расшифровки,
О.Ляшевская предложила типологию таких ошибок и показала, как они
помогают нам понять, что же позволяет человеку более точно настраивать
свой аппарат речевого распознавания. Кроме того, обсуждались вопросы
создания корпуса расшифровок, а именно, проблемы выравнивания
параллельных расшифровок (автоматической и ручной) и детекции ошибок.