• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Книга
Quantitative approaches to the Russian language
В печати

Под редакцией: M. Kopotev, O. Lyashevskaya, A. Mustajoki.

Routledge, Taylor & Francis Group, 2018.

Статья
Андатив и вентив в языках Сибири: к типологии глагольной ориентации
В печати

Волков О. С., Стенин И. А.

Acta Linguistica Petropolitana. Труды института лингвистических исследований. 2018.

Глава в книге
Игры с английским языком. Летние лингвистические школы 2009 – 2011
В печати

Виноградова О. И., Шеманаева О. Ю.

В кн.: Лингвистика для всех. Летние лингвистические школы 2009 - 2011. Кн. 3: Лингвистика для всех. Летние лингвистические школы 2009 - 2011. М.: МЦНМО, 2018.

Препринт
Nominative object in modern North Russian dialects

Ronko R.

Linguistics. WP BRP. НИУ ВШЭ, 2017. No. 61.

Лингвисты в разврате надежд: мастер-класс по анализу телефонных разговоров

В минувший понедельник в Школе лингвистики прошел мастер-класс Евгении Мещеряковой и Любови Нестеренко из компании DC-Systems, посвященный задачам автоматической обработке распознанных записей call-центров.

Сегодня call-центры по всему миру ежедневно обрабатывают миллионы звонков, и автоматизация даже небольшой части их работы способна принести бизнесам миллионы долларов сокращенных издержек. Системы, могущие решать проблемы клиентов в автоматическом или хотя бы полуавтоматическом (например, классифицировать тип проблемы и связать с нужным специалистом) режиме, чрезвычайно востребованы, в их разработку вкладывают значительные средства как крупные компании, так и небольшие стартапы. 

Однако работа со звучащей речью представляет серьезный вызов как для инженеров, так и для лингвистов. Обработка распознанных записей особенно сложна из-за невозможности получить “чистый” текст. Даже если качество распознавания звучащей речи составляет 70-80%, доля ошибок настолько велика, что затрудняется даже понимание человеком, не говоря уже об автоматическом анализе.

Выпускницы магистерской программы "Компьютерная лингвистика" Евгения Мещерякова и Любовь Нестеренко работают лингвистами в технологическом стартапе DC-Systems и сталкиваются с такими проблемами регулярно. Во время мастер-класса они показали примеры ошибок распознавания речи, которые попались им в работе. Типичные реплики выглядят так:

если, собачку с тобой везём кота как это сделать. там баранина, аха.
но оно регистрация для вас будет недоступно, так она, только для улиток из москвы

Демонстрация проводилась в форме викторины: слушателм предлагалось угадать, что скрывается за “эротическим” и “аллергическим” адресом (юридический адрес), “персональным инжиром” (персональный менеджер), а также “ногтями коня” и “развратом надежд”. Затем обсуждались возможные способы борьбы с искажениями текста, его правильной тематической классификации, детектирования неправильно распознанных слов.