• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 105066, г. Москва,
Старая Басманная ул., д. 21/4

 

🧭 Как до нас добраться

 

Телефон: +7 (495) 772-95-90 доб. 22734

E-mail: ling@hse.ru

Руководство
Заместитель руководителя Ахапкина Яна Эмильевна

Редакторы сайта — Наталья Борисовна Пименова, Татьяна Борисовна Казакова, Максим Олегович Бажуков, Юлия Геннадьевна Бадрызлова

Книга
Proceedings of the 3rd Workshop on NLP Applications to Field Linguistics (Field Matters 2024)

Bangkok: Association for Computational Linguistics, 2024.

Глава в книге
Mathematicon: A corpus-based platform for teachers and students of RFL
В печати

Anna Leonteva, Toldova S., Fedorov D. et al.

In bk.: Teaching Russian Through STEM: Contexts, Tools, and Approaches. Vol. 1st Edition. L.: Taylor & Francis, 2024.

Препринт
Exploring the Effectiveness of Methods for Persona Extraction
В печати

Konstantin Zaitsev.

arxiv.org. Computer Science. Cornell University, 2024

Лингвисты в разврате надежд: мастер-класс по анализу телефонных разговоров

В минувший понедельник в Школе лингвистики прошел мастер-класс Евгении Мещеряковой и Любови Нестеренко из компании DC-Systems, посвященный задачам автоматической обработке распознанных записей call-центров.

Сегодня call-центры по всему миру ежедневно обрабатывают миллионы звонков, и автоматизация даже небольшой части их работы способна принести бизнесам миллионы долларов сокращенных издержек. Системы, могущие решать проблемы клиентов в автоматическом или хотя бы полуавтоматическом (например, классифицировать тип проблемы и связать с нужным специалистом) режиме, чрезвычайно востребованы, в их разработку вкладывают значительные средства как крупные компании, так и небольшие стартапы. 

Однако работа со звучащей речью представляет серьезный вызов как для инженеров, так и для лингвистов. Обработка распознанных записей особенно сложна из-за невозможности получить “чистый” текст. Даже если качество распознавания звучащей речи составляет 70-80%, доля ошибок настолько велика, что затрудняется даже понимание человеком, не говоря уже об автоматическом анализе.

Выпускницы магистерской программы "Компьютерная лингвистика" Евгения Мещерякова и Любовь Нестеренко работают лингвистами в технологическом стартапе DC-Systems и сталкиваются с такими проблемами регулярно. Во время мастер-класса они показали примеры ошибок распознавания речи, которые попались им в работе. Типичные реплики выглядят так:

если, собачку с тобой везём кота как это сделать. там баранина, аха.
но оно регистрация для вас будет недоступно, так она, только для улиток из москвы

Демонстрация проводилась в форме викторины: слушателм предлагалось угадать, что скрывается за “эротическим” и “аллергическим” адресом (юридический адрес), “персональным инжиром” (персональный менеджер), а также “ногтями коня” и “развратом надежд”. Затем обсуждались возможные способы борьбы с искажениями текста, его правильной тематической классификации, детектирования неправильно распознанных слов.