• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 105066, г. Москва,
Старая Басманная ул., д. 21/4

Как до нас добраться

 

Телефон: +7 (495) 772-95-90 доб. 22734

E-mail: ling@hse.ru

По вопросам, связанным с сайтом: portalhseling@gmail.com

Руководство
Заместитель руководителя Ахапкина Яна Эмильевна
Книга
Number in the World's Languages
В печати

Под редакцией: P. Acquaviva, M. Daniel.

Berlin: De Gruyter Mouton, 2020.

Статья
Relative clauses in Agul from a corpus-based perspective
В печати

Maisak T.

STUF - Language Typology and Universals . 2020. Vol. 73. No. 1. P. 1-46.

Глава в книге
Head/dependent marking
В печати

Lander Yu., Nichols J.

In bk.: The Oxford Encyclopedia of Morphology. Oxford: Oxford University Press, 2020.

Препринт
Length Of Constituent As A Relevant Factor In Russian Syntax

Letuchiy A.

Linguistics. WP BRP. НИУ ВШЭ, 2019. No. WP BRP 88/LNG/2019.

Лингвисты в разврате надежд: мастер-класс по анализу телефонных разговоров

В минувший понедельник в Школе лингвистики прошел мастер-класс Евгении Мещеряковой и Любови Нестеренко из компании DC-Systems, посвященный задачам автоматической обработке распознанных записей call-центров.

Сегодня call-центры по всему миру ежедневно обрабатывают миллионы звонков, и автоматизация даже небольшой части их работы способна принести бизнесам миллионы долларов сокращенных издержек. Системы, могущие решать проблемы клиентов в автоматическом или хотя бы полуавтоматическом (например, классифицировать тип проблемы и связать с нужным специалистом) режиме, чрезвычайно востребованы, в их разработку вкладывают значительные средства как крупные компании, так и небольшие стартапы. 

Однако работа со звучащей речью представляет серьезный вызов как для инженеров, так и для лингвистов. Обработка распознанных записей особенно сложна из-за невозможности получить “чистый” текст. Даже если качество распознавания звучащей речи составляет 70-80%, доля ошибок настолько велика, что затрудняется даже понимание человеком, не говоря уже об автоматическом анализе.

Выпускницы магистерской программы "Компьютерная лингвистика" Евгения Мещерякова и Любовь Нестеренко работают лингвистами в технологическом стартапе DC-Systems и сталкиваются с такими проблемами регулярно. Во время мастер-класса они показали примеры ошибок распознавания речи, которые попались им в работе. Типичные реплики выглядят так:

если, собачку с тобой везём кота как это сделать. там баранина, аха.
но оно регистрация для вас будет недоступно, так она, только для улиток из москвы

Демонстрация проводилась в форме викторины: слушателм предлагалось угадать, что скрывается за “эротическим” и “аллергическим” адресом (юридический адрес), “персональным инжиром” (персональный менеджер), а также “ногтями коня” и “развратом надежд”. Затем обсуждались возможные способы борьбы с искажениями текста, его правильной тематической классификации, детектирования неправильно распознанных слов.