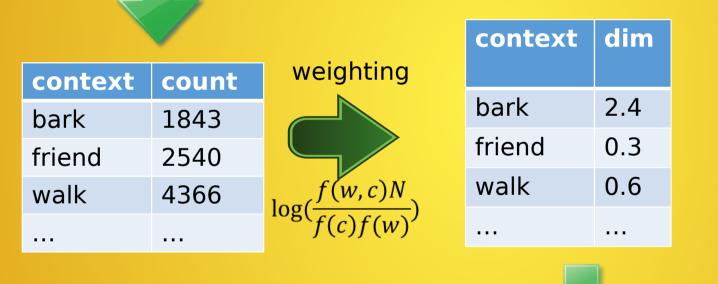
Distributional Semantics: Composition Models and Applications to Typology

> Denis Paperno TyLex, 07.09.2017

when dogs bark a dog today a cat tomorrow have you walked the dog there was a dog in the park a dog is a man's best friend a sad old dog was sleeping have you walked the dog

# **DSM** Creation



SVD, NMF, SkipGram, Glove...

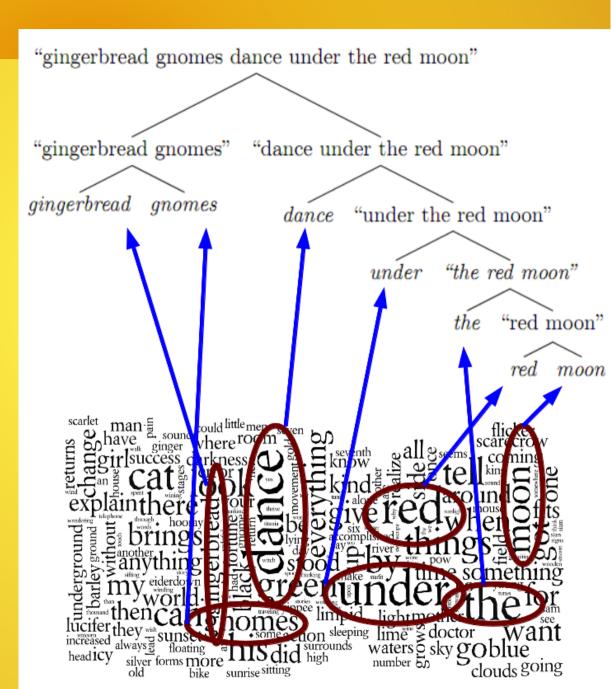
**Dimentionality reduction** 

dog -1.78 -1.62 -1.9 1.16 0.86 0.16 1.2 -1.34 1.1

### Compositionality

 Programmatic article:

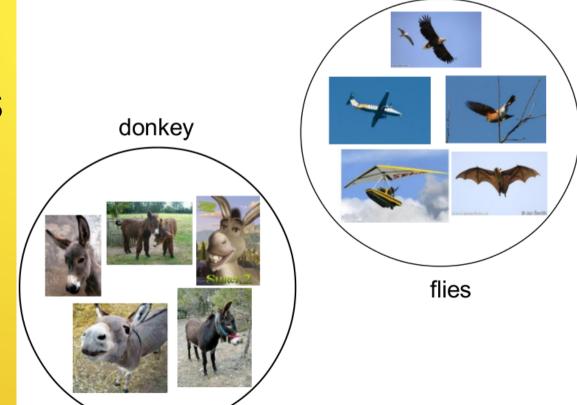
> M. Baroni, R. Bernardi and R. Zamparelli. 2014. Frege in space: A program for compositional distributional semantics. Linguistic Issues in Language Technologies 9(6): 5-110.



# Compositionality in formal semantics

- SOME: function, takes 2 sets A and B
  - Returns True if A and B share an element
  - Returns False otherwise

Some donkey flies



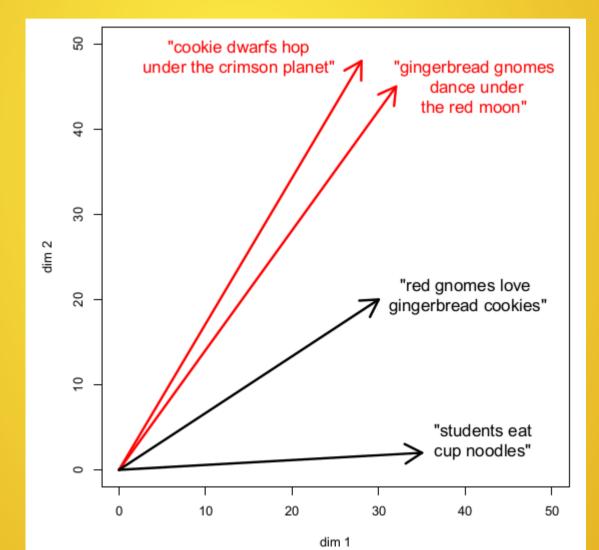
# **Composition models**

 Needed if we want to use vectors for phrases, sentences, etc.:

|                     | planet | night | full | blood | shine |
|---------------------|--------|-------|------|-------|-------|
| moon                | 10     | 22    | 43   | 3     | 29    |
| red moon            | 12     | 21    | 40   | 20    | 28    |
| the red moon shines | 11     | 23    | 21   | 15    | 45    |

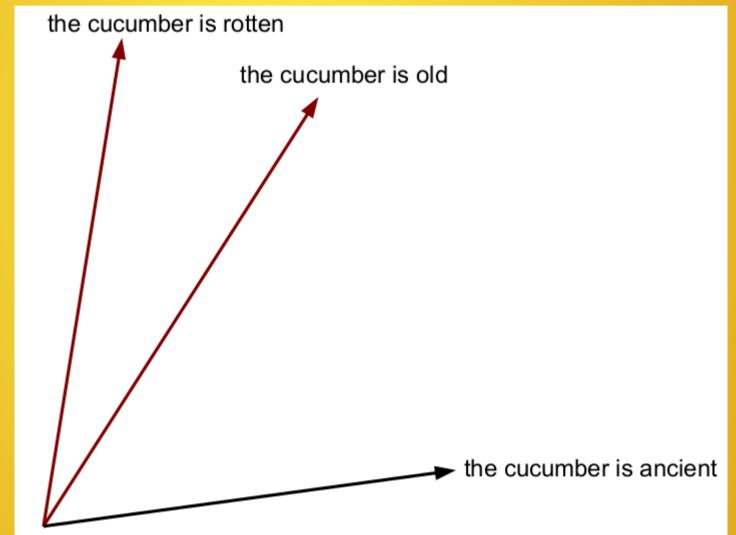
# **Possible** applications

Paraphrasing



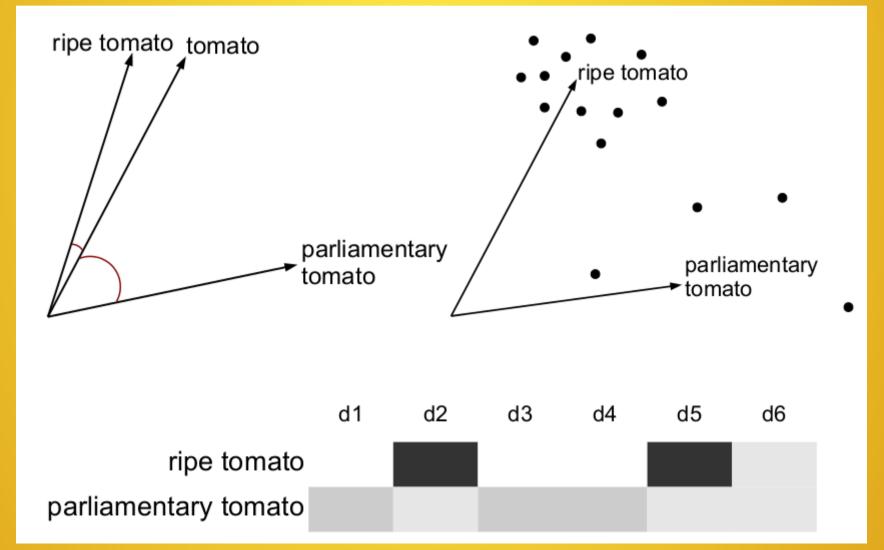
# **Possible applications**

### Contextual disambiguation



# **Possible** applications

Semantic plausibility



# Semantic composition: how?

• Pointwise addition and multiplication:

|           | planet | night | space | color | blood | brown |
|-----------|--------|-------|-------|-------|-------|-------|
| red       | 15.3   | 3.7   | 2.2   | 24.3  | 19.1  | 20.2  |
| moon      | 24.3   | 15.2  | 20.1  | 3.0   | 1.2   | 0.5   |
| red+moon  | 39.6   | 18.9  | 22.3  | 27.3  | 20.3  | 20.7  |
| red⊙moon  | 371.8  | 56.2  | 44.2  | 72.9  | 22.9  | 10.1  |
| red(moon) | 24.6   | 19.3  | 12.4  | 22.6  | 23.9  | 7.1   |

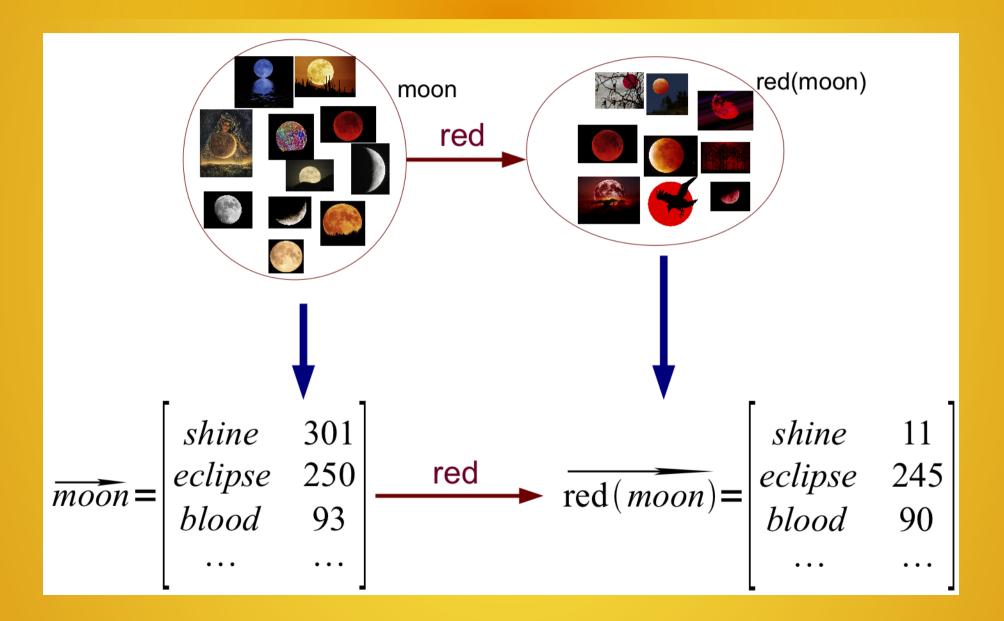
# Weighted addition

• (Mitchell and Lapata 2010)

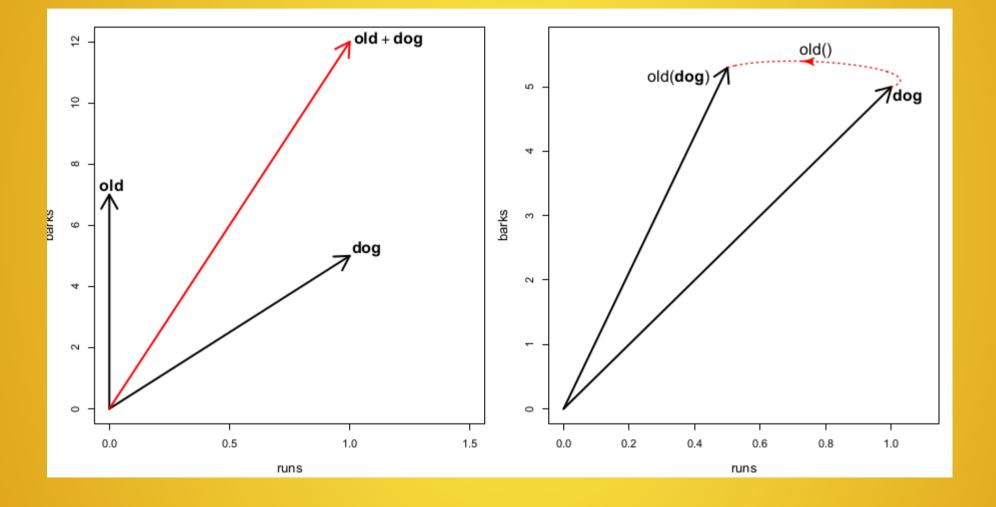
$$\vec{\pmb{\rho}} = \alpha \vec{\pmb{u}} + \beta \vec{\pmb{v}}$$

|                                                              | music | solution | economy | craft | reasonable |
|--------------------------------------------------------------|-------|----------|---------|-------|------------|
| practical                                                    | 0     | 6        | 2       | 10    | 4          |
| difficulty                                                   | 1     | 8        | 4       | 4     | 0          |
| practical + difficulty                                       | 1     | 14       | 6       | 14    | 4          |
| $0.4 \times \text{practical} + 0.6 \times \text{difficulty}$ | 0.6   | 5.6      | 3.2     | 6.4   | 1.6        |

# Lexical function

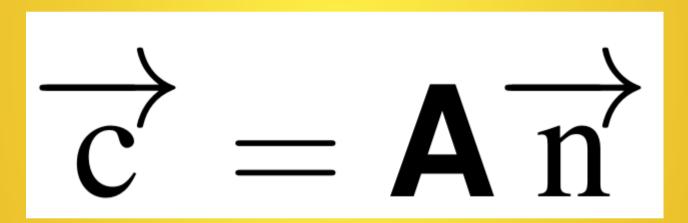


# Addition vs. lexical function



# Linear Mapping

 "Adjectives are matrices" (Baroni and Zamparelli 2012)



## In practice: collect phrase vectors

n and the moon shining i
with the moon shining s
rainbowed moon . And the
crescent moon , thrille
in a blue moon only , wi
now , the moon has risen
d now the moon rises , f
y at full moon , get up
crescent moon . Mr Angu

f a large red moon , Campana
, a blood red moon hung over
glorious red moon turning t
The round red moon , she 's
l a blood red moon emerged f
n rains , red moon blows , w

|          | shine | blood | Soviet |
|----------|-------|-------|--------|
| moon     | 301   | 93    | 1      |
| red moon | 11    | 90    | 0      |
| army     | 2     | 454   | 20     |
| red army | 0     | 22    | 18     |

# ...and estimate the matrix for the adjective

- Input:
  - N: matrix of noun vectors
  - C: matrix of adj-noun observed phrase vectors

| $c^1$                 | red.moon | $n^1$          | $\overrightarrow{\text{moon}}$ |
|-----------------------|----------|----------------|--------------------------------|
| <i>c</i> <sup>2</sup> | red.army | n²             | army                           |
| $c^3$                 | red.car  | n <sup>3</sup> | $\overrightarrow{car}$         |

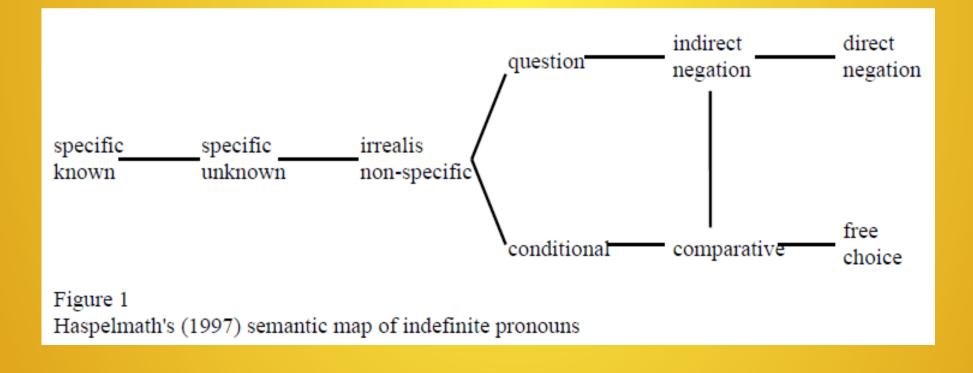
- Estimate:
  - Matrix of function word (A<sub>red</sub>)

# Application to Typology: Semantic Typology of Adjectives

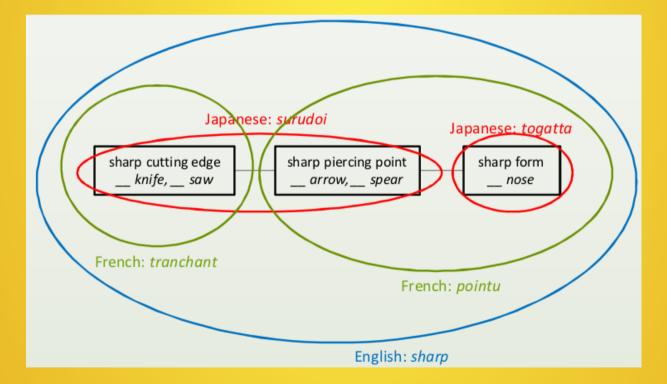
Ryzhova, Kyuseva and Paperno. Typology of Adjectives Benchmark for Compositional Distributional Models. Proceedings of Language Resources and Evaluation, 2016

# Semantic Maps

 "attempts to visually represent crosslinguistical regularity in semantic structure"



# Lexical Semantic Variation



# **Typological vector space**

- 1: lexical item covers a given usage
- 0: lexical item does not cover a given usage

|       | English<br><i>sharp</i> | Japanese<br><i>surudoi</i> | Japanese<br><i>togatta</i> | French<br><i>tranchant</i> | French<br><i>pointu</i> |  |
|-------|-------------------------|----------------------------|----------------------------|----------------------------|-------------------------|--|
| knife | 1                       | 1                          | 0                          | 1                          | 0                       |  |
| saw   | 1                       | 1                          | 0                          | 1                          | 0                       |  |
| arrow | 1                       | 1                          | 0                          | 0                          | 1                       |  |
| spear | 1                       | 1                          | 0                          | 0                          | 1                       |  |
| nose  | 1                       | 0                          | 1                          | 0                          | 1                       |  |

 $w_i = 1$  iff w is covered by the lexeme  $l_i$  of some language in the database.

# **Typological Closeness**

Typological closeness of two word usages w, w' is a measure of how likely an arbitrary lexical item of an arbitrary human language that covers one of them is to cover both.

Typological closeness can be quantified as the **cosine of typological vectors** of word usages.

$$sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

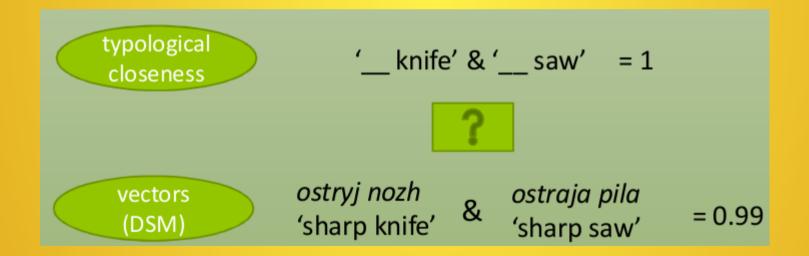
# Simplified example

| saw   | 1 | 1 | 0 | 1 | 0 |
|-------|---|---|---|---|---|
| arrow | 1 | 1 | 0 | 0 | 1 |
| spear | 1 | 1 | 0 | 0 | 1 |

 $sim(sharp_arrow,sharp_saw)=2/(3*3)^{1/2}=2/3=0.67$  $sim(sharp_arrow,sharp_spear)=3/(3*3)^{1/2}=3/3=1$ 

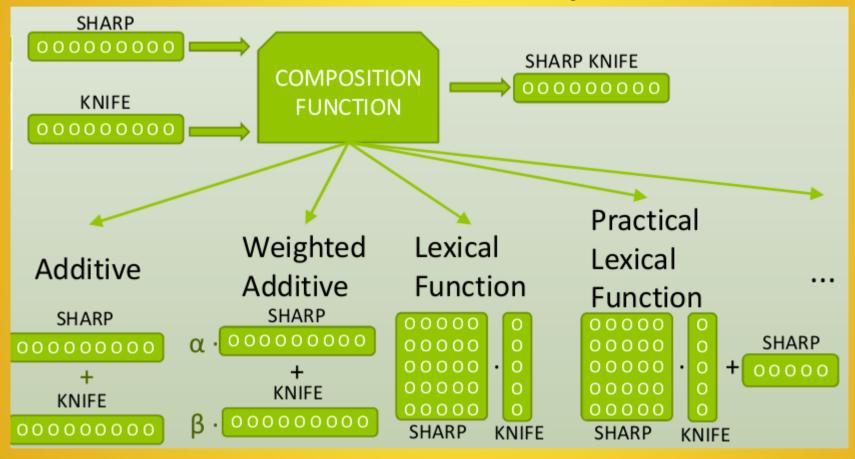
# Evaluation

 How well is typological closeness correlated with closeness in a DSM?



# **Compositional DSM**

#### • What is the vector for sharp knife?



# Test data

#### semantic field 'sharp',

direct and figurative meanings

(9019 pairs of rows)

only direct meanings (528 pairs)

#### 'smooth',

direct and figurative meanings (1992 pairs) only direct meanings (561 pairs)

# Results

|    | corpus | vectors   | composition model    | sharp | sharp:direct | smooth | smooth:direct |
|----|--------|-----------|----------------------|-------|--------------|--------|---------------|
| 1  | RNC    | none      | noun only            | 0.092 | 0.12         | 0.121  | 0.196         |
| 2  | RNC    | ppmi      | noun only            | 0.139 | 0.167        | 0.237  | 0.21          |
| 3  | RNC    | ppmi,SVD  | noun only            | 0.167 | 0.268        | 0.274  | 0.244         |
| 4  | RNC    | ppmi      | none                 | 0.097 | 0.194        | 0.134  | 0.154         |
| 5  | RNC    | ppmi      | Additive             | 0.36  | 0.654        | 0.589  | 0.74          |
| 6  | RNC    | ppmi      | Multiplicative       | 0.253 | 0.421        | 0.585  | 0.7           |
| 7  | RNC    | ppmi      | Dilation             | 0.19  | 0.222        | 0.379  | 0.443         |
| 8  | RNC    | ppmi      | Dilation w/ Training | 0.207 | 0.35         | 0.249  | 0.313         |
| 9  | RNC    | ppmi, SVD | LexFunc              | 0.112 | 0.336        | 0.263  | 0.349         |
| 10 | RNC    | ppmi, SVD | LexFunc, Ridge       | 0.116 | 0.345        | 0.443  | 0.703         |
| 11 | RNC    | ppmi, SVD | PrLexFunc            | 0.389 | 0.765        | 0.444  | 0.931         |
| 12 | RNC    | ppmi, SVD | PrLexFunc, Ridge     | 0.39  | 0.766        | 0.449  | 0.946         |
| 13 | RNC    | none      | WeightedAdd          | 0.443 | 0.754        | 0.589  | 0.849         |
| 14 | RNC    | plog      | WeightedAdd          | 0.387 | 0.76         | 0.477  | 0.765         |
| 15 | RNC    | epmi      | WeightedAdd          | 0.462 | 0.763        | 0.59   | 0.865         |
| 16 | RNC    | ppmi      | WeightedAdd          | 0.42  | 0.764        | 0.604  | 0.905         |
| 17 | RNC    | plmi      | WeightedAdd          | 0.443 | 0.762        | 0.603  | 0.791         |
| 18 | all    | ppmi      | WeightedAdd          | 0.418 | 0.764        | 0.564  | 0.899         |
| 19 | all    | plmi      | WeightedAdd          | 0.438 | 0.763        | 0.549  | 0.712         |
| 20 | RNC    | ppmi, SVD | Additive             | 0.269 | 0.443        | 0.404  | 0.566         |
| 21 | RNC    | ppmi, SVD | Dilation w/ Training | 0.388 | 0.766        | 0.448  | 0.936         |
| 22 | RNC    | ppmi, SVD | WeightedAdd          | 0.388 | 0.717        | 0.421  | 0.682         |
| 23 | RNC    | ppmi, SVD | Dilation             | 0.231 | 0.519        | 0.374  | 0.512         |
| 24 | RNC    | ppmi, SVD | Multiplicative       | 0.062 | 0.41         | 0.194  | 0.228         |

# Further experiment: Questionnaire construction



- Sharp knife, sharp sword, sharp saw
- Sharp needle, sharp arrow, sharp nail
- Sharp nose, sharp mountain, sharp elbow
  - ....
- Sharp line, sharp photo, sharp contrast
- Sharp mind, sharp gaze, sharp girl
- ....

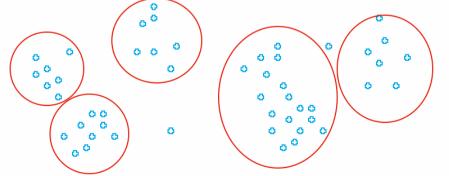
# Procedure

1) Defining the lexemes that constitute the semantic field under investigation (with the help of translation dictionaries);

2) Collecting a list of contexts in which the target words occur (based on the data of the lemmatized RNC main subcorpus);

3) Creating a semantic vector space (with Distributional Semantic Models techniques);

4) Clustering the resulting space (with the hierarchical clustering algorithm);



5) Extracting three core elements from every cluster.

# Examples of resulting clusters

#### Example 1:

prjamoj\_stolb 'straight pole' prjamoj\_dorozhka 'straight path' prjamoj\_alleja 'straight avenue' <u>Example 2:</u> prjamoj\_potomok 'direct descendant' prjamoj\_predshestvennik 'direct predecessor' prjamoj\_nasledije 'direct heritage'

# Markup for evaluation

<u>'straight': fragment of the dataset marked up by</u> <u>experts</u>

prjamoj rjad 'straight row' 1 prjamaja linija 'straight line' 1 prjamoj udar 'straight/direct blow' 1|4 prjamoj dostup 'direct access' 6 prjamoj razgovor 'direct/frank conversation' 6|7 prjamaja ugroza 'direct threat' 7

## Results

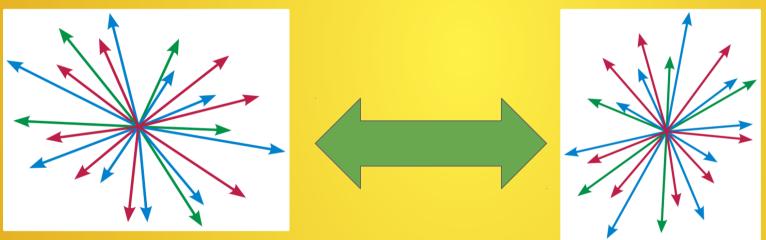
#### F = 2PR / (P+R)

Recall, R: how many typological nodes are presented Precision, P: (=purity), whether every cluster is homogenous or not

Best results: 0.903 for 'sharp', .884 for 'straight'

# **Typological case: Conclusions**

- Explicit notion of typological semantic space
- relation between typological and distributional spaces



• Inferred nodes in the typological space from CDSM.

# Demo: the Dissect toolkit

- Would you like to do computations with distributional vector spaces?
- If you already use software packages for dealing with vector data (e.g. R, Matlab, numpy or Tensorflow), you are all set
- Otherwise you may try Dissect http://clic.cimec.unitn.it/composes/toolkit/
- Prerequisites: Linux system with Python 2.7

# Programming not necessary

Ready scripts for many basic operations

- Create vectors from cooccurrence data
- Compute and evaluate similarity scores
- Find nearest neighbors in a vector space
- Train and apply composition models

# Thank you!

 And let's stay in touch denis.paperno@gmail.com

 Thanks to Daria Ryzhova for the help with reading assignments