Distributional Models for Lexical Semantics

Lecture 2: Don't be afraid of matrices

Denis Paperno TyLex - Voronovo 2017

Vectors and matrices

- Vectors are structures of \mathbf{n} numbers
<1,2,3,4,5,6>
- Matrices are structures of $\mathbf{n x m}$ numbers
- Example: | 2×3 | matrix | |
| ---: | :--- | :--- | :--- |
| 1 | 2 | 3 |
| 4 | 5 | 6 |

Vectors and matrices

- One word vector:

dog	246	72	78	71	1

- Cooccurrence vectors of mutiple words form a nxm cooccurrence matrix

| | bark | walk | talk | tail | bag |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| dog | 246 | 72 | 78 | 71 | 1 |
| cat | 5 | 15 | 25 | 32 | 0 |
| man | 0 | 57 | 133 | 0 | 1 |
| moman | 2 | 203 | 407 | 5 | 18 |

Vectors and matrices

- An n-dimensional vector can be represented as a matrix:
- an nx1 matrix

123

- or a 1 xn matrix

1
2
3

Vector multiplication

- We have used vector multiplication as part of the definition of the cosine:

$$
v \cdot u=\sum_{i} v_{i} * u_{i}
$$

equivalent to multiplication of a $1 \times n$ and an $n \times 1$ matrices:

$$
\left. \right\rvert\, \begin{array}{|l|l|}
\hline 4 \\
\hline
\end{array}
$$

Vector multiplication

- We have used vector multiplication as part of the definition of the cosine:

$$
v \cdot u=\sum_{i} v_{i} * u_{i}
$$

equivalent to multiplication of a $1 \times n$ and an $n \times 1$ matrices:

Matrix multiplication

matrices A and B of sizes $\mathbf{n x m}$ and $\mathbf{m \times p}$

$$
\mathbf{A}=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 m} \\
A_{21} & A_{22} & \cdots & A_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n 1} & A_{n 2} & \cdots & A_{n n}
\end{array}\right), \mathbf{B}=\left(\begin{array}{cccc}
B_{11} & B_{12} & \cdots & B_{1 p} \\
B_{21} & B_{22} & \cdots & B_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
B_{m 1} & B_{m 2} & \cdots & B_{m p}
\end{array}\right)
$$

- $A B$ is a matrix of size $\mathbf{n x p}$
- $(A B)_{i j}$ is the ith row of A^{2} *jth column of B

Matrix multiplication

-What is the result of this multiplication?

	4
	5
123 *	6

Matrix multiplication

-What is the result of this multiplication?

$$
\begin{array}{|c|c|c|c|}
\hline & & & \\
\hline
\end{array}
$$

- 1×3 by 3×2 matrix product gives a 1×2 size
$1 * 4+2 * 5+3 * 61 * 7+2 * 8+3 * 9=<32,50>$

Applications of matrices

- Dimensionality reduction
- Mapping distributional vector spaces:
- From one language to another
- From one period of time to another
- Linguistic vectors to image vectors
- Compositionality models

Dimensionality reduction in DSM

- Different matrix decomposition methods
-SVD, NMF, LDA, neural models...

Cimensions

	dimensio
	Σ weights

GRIFFITHS, STEYVERS, AND TENENBAUM

[^0]
Latent dimensions as topics

-(Griffiths et al. 2007)

Topic			
123			
BANK	MONEY	STREAM	OIL
COMMERCIAL	BANK	RIVER	PETROLEUM
CRUDE	FEDERAL	BANK	GASOLINE
DEEP	RESERVE	DEEP	CRUDE
DEPOSITS	LOANS	WOODS	COMMERCIAL
DRILL	DEPOSITS	FIELD	DEPOSITS
FEDERAL	COMMERCIAL	MONEY	RIVER
FIELD	DEEP	MEADOW	DRILL
GASOLINE	MEADOW	OIL	MONEY
LOANS	OIL	FEDERAL	DEEP
MEADOW	RIVER	DEPOSITS	FIELD
MONEY	CRUDE	LOANS	STREAM
OIL	DRILL	COMMERCIAL	RESERVE
ETROLEUM	FIELD	CRUDE	BANK
	GASOLINE	DRILL	LOANS
RESERVE	PETROLEUM	GASOLINE	FEDERAL
RIVER	STREAM	PETROLEUM	MEADOW
STREAM	WOODS	RESERVE	woods
WOODS			

Probabilistic interpretation

- In Topic Models, the decomposition is meant to be interpreted as a probability distibution: $p(w \mid c)=\sum_{t} p(w \mid t) p(t \mid c)$

Probability of the topic given the context
Probability of a word in a given topic
Probability of the word in a given context
topics
contexts
contexts
words

Neural word embeddings

- Recent, popular distributional semantic models based on neural networks
- Word2vec (Mikolov et al. 2013)
- Glove (Pennington et al. 2014)
- "embedding"=vector
- Metaphor: words embedded in the vector space

Skip-gram model

- One of the word2vec models along with CBOW
- Formally, the model is trained at predicting context words from a given word
$\mathrm{P}(\mathrm{w}, \mathrm{c})=\sigma\left(\hat{\mathrm{w}}^{\star} \hat{c}\right)$

Mikolov et al. 2013

Success of neural models

- Our secret wish was to discover that it is all hype, and count vectors are far superior to their predictive counterparts. A more realistic expectation was that a complex picture would emerge, with predict and count vectors beating each other on different tasks. Instead, we found that the predict models are so good that, while the triumphalist overtones still sound excessive, there are very good reasons to switch to the new architecture.
- Baroni et al. 2014

Results from Baroni et al. 2014

	rg	ws	wss	wsr	men	toefl		esslli	battig	up	mcrae	an	ansyn	ansem
best setup on each task														
cnt	74	62	70	59	72	76	66	84	98	41	27	49	43	60
pre	84	75	80	70	80	91	75	86	99	41	28	68	71	66
best setup across tasks														
cnt	70	62	70	57	72	76	64	84	98	37	27	43	41	44
pre	83	73	78	68	80	86	71	77	98	41	26	67	69	64
worst setup across tasks														
cnt	11	16	23	4	21	49	24	43	38	-6	-10	1	0	1
pre	74	60	73	48	68	71	65	82	88	33	20	27	40	10
best setup on rg														
cnt	(74)	59	66	52	71	64	64	84	98	37	20	35	42	26
pre	(84)	71	76	64	79	85	72	84	98	39	25	66	70	61
other models														
soa	86	81	77	62	76	100	79	91	96	60	32	61	64	61
dm	82	35	60	13	42	77	76	84	94	51	29	NA	NA	NA
cw	48	48	61	38	57	56	58	61	70	28	15	11	12	9

Neural networks

Neural network components

- Nodes ("neurons") organized in layers
- Weighted connections between layers

Neural networks, demystified:

- Layers = vectors
- Connections = matrices
- Signal propagation = matrix multiplication (modulo nonlinearity)

Matrix decomposition in DSM

- Matrix decomposition can be represented as a simple neural network:
word-topic weights topic-context weights words topics contexts

GloVe

explicit matrix factorization method using neural

$$
\vec{w} \cdot \vec{c}+b_{w}+b_{c}=\log (\#(w, c)) \quad \forall(w, c) \in D
$$

Inside word2vec

- SG with negative sampling maximizes:

$$
\log \sigma(\vec{w} \cdot \vec{c})+k \cdot \mathbb{E}_{c_{N} \sim P_{D}}\left[\log \sigma\left(-\vec{w} \cdot \vec{c}_{N}\right)\right]
$$

On average, learning will converge when

$$
\vec{w} \cdot \vec{c}=\log \left(\frac{\#(w, c) \cdot|D|}{\#(w) \cdot \#(c)} \cdot \frac{1}{k}\right)=\log \left(\frac{\#(w, c) \cdot|D|}{\#(w) \cdot \#(c)}\right)-\log k
$$

(Levy and Goldberg 2014)

Takehome messages about neural models

- Neural models (GloVe, word2vec) are distributional models with matrix factorization
- In particular, Skip-gram with negative sampling (SGNS) learns vectors of words and contexts to approximate ($\mathrm{PMI}(\mathrm{w}, \mathrm{c})-\log \mathrm{k}$)
i.e. SGNS implicitly factorizes the (shifted) PMI matrix, like other distributional models

Word2vec has settings other than SGNS but they perform comparably to SGNS

Using matrices as mappings

Example: Distributional onto Visual vectors

Image recognition

- Convolutional Neural Network
- Scheme from Krizhevsky et al. 2012:

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528 -dimensional, and the number of neurons in the network's remaining layers is given by $253,440-186,624-64,896-64,896-43,264-$ 4096-4096-1000.

Lazaridou et al. 2015b

Do Distributed Semantic Models Dream of Electric Sheep?

- "dreams" as averages of 20 related images
- Not including images of the word itself
- Task: relate words with "dreams"
- 20 votes per item

Lazaridou et al. 2015b

- Experiment 1: pick the right word for the dream

Figure 1: Experiment 1: Example dreams with correct dreamed word and confounder. Subjects showed a significant preference for the colored word (green if right, red if wrong).

Lazaridou et al. 2015b

- The reverse: pick the right dream

Figure 2: Experiment 2: Example dream pairs: the one on the left was generated from the word below the pair, the other from a confounder (clockwise from top left: truck, dove, pie, parakeet).

Results

- Experiment 1. 90\% median percentage of votes for the correct image
- Experiment 2. 60% median percentage of votes for the correct image

Lazaridou et al. 2015b

- Part of why it works: visual properties

Figure 3: Examples illustrating properties of dream synthesis by image averaging.

Application to diachronic change

- Hamilton et al. 2016 built distributional vectors for each decade over 150 years and used a matrix to map them to each other

Word vectors for 1920
Word vectors 1990

Models and alignment

- Three models:
- PPMI
- SVD
- SGNS
- For the latter two, they had to find a matrix to align vectors of one decade to another

Reasonable performance for known lexical semantic changes

Evaluation

- 28 expert-attested pairwise shifts, e.g.
- gay, homosexual
- fatal, lethal

moving closer together

- broadcast, seed
- nice, refined
drifting further apart

Examples of discovered shifts

- Top-10 shifts from 1900s to 1990s: how many are sensible?
- Performance: SGNS(8) > SVD(4) > PPMI(1)

Method Top-10 words that changed from 1900s to 1990s
PPMI know, got, would, decided, think, stop, remember, started, must, wanted SVD harry, headed, calls, gay, wherever, male, actually, special, cover, naturally SGNS wanting, gay, check, starting, major, actually, touching, harry, headed, romance

Word	Language	Nearest-neighbors in 1900s	Nearest-neighbors in 1990s
wanting	English	lacking, deficient, lacked, lack, needed	wanted, something, wishing, anything, anybody
asile	French	refuge, asiles, hospice, vieillards, in- firmerie	demandeurs, refuge, hospice, visas, ad- mission
widerstand	German	scheiterte, volt, stromstärke, leisten, brechen	opposition, verfolgung, nationalsozialis- tische, nationalsozialismus, kollaboration

Predicting rate of change

$\Delta\left(w_{i}\right) \propto f\left(w_{i}\right)^{\beta_{f}^{0}} \times d\left(w_{i}\right)^{\beta_{d}^{0}}$

Rate of semantic
Frequency
Polysemy score change

- Frequent words change more slowly
- Polysemous words change faster
- Criticism from Dubossarsky et al. 2017: Most of the observed effects come from statistical noise; the factors are real but their effect is much smaller.

Thank you!

...and see you tomorrow for more applications and a demo!

[^0]: Illuctration of annrovimate non-negative matriv factorization the matrix V ic renresented

